Abstract Submission :

Submit Abstract

Registration :

Register Now

Become a Sponsor/Exhibitor :

Become a Sponsor

Conference Organizing Committee :

View Committee

Register Now :

Register Now

Conference Program :

Brochure Download

SCIENTIFIC SESSIONS

  • Nanomedicine and Nano Drug Delivery
  • Nanotechnology Applications
  • Nanotechnology and Nano materials
  • Nano Particles and Nano Composites
  • Carbon Nanomaterials, Devices and Technologies
Read More

IMPORTANT DATES

Abstract Submission
December 11, 2018

Early Bird Registration
December 13, 2018

Register Now

Scientific Committee

Click on the image to view biography

Bilgin Kaftanoglu

professor, Atilim University, Turkey

Professor Bilgin Kaftanoglu is the Chairman of the  Center of Competence for Boron Coatings  at ATILIM University in Ankara, TURKEY. He recieved his B.Sc. degree in M.E. in 1960 from Middle East Technical University (METU) and the DIC and Ph.D. degrees during 1960-66 from Imperial College of Science and Technology-University of London in UK.  He served as faculty member, Chairman of ME and Vice President of METU from 1969-2006. He held research position at International Computers Ltd.-London, Bell Labs.-Ottawa  and   Professorial positions at Ottawa and Oklahoma State Universities(OSU).He established the CAD/CAM/Robotics Centers at METU and OSU. He is a CIRP Fellow and has 288 publications and refereed many journals. He has organized 8 DIE/MOLD Conferences and the CIRP General Assembly. He has been Members of ASME, I.Mech.E., Institute of Metals and MMO. He is chairing the Mechanical Design and Production Society ( MATIM) of TURKEY. He supervised 78 graduate students. His research interests include Fastener Production, CAD/CAM, Wire-Rod Drawing / Forward Rod Extrusion, Forging, Extrusion, Strech Forming, Rolling, Computational Mechanics, Manufacturing Tribology, Solid Mechanics, Bulk Metal Forming, Machine Design, Material Models, Mechanical Characterization, Friction In Metal Forming Process, Metal Forming Theory And Technology, Robotics, Sheet Metal Forming, Manufacturing Methods, Coating and Characterization, Lubricants.

Martin Kroger

Professor, ETH Zurich, Switzerland

Martin Kroger studied Mathematics and Physics, 1985–1991, received a PhD degree in Theoretical Physics, 1994, from the Technical University of Berlin (TUB). He was a Senior Scientist at TUB, 1995–2003, ETH Zurich, 1997–2005, Invited Professor, Universities of Metz, 1995, and Strasbourg, 1996. He has been an Editor of Applied Rheology, since 1998, and went for postdocts at Hebrew University, Jerusalem, 1997, Kavli Institute for Theoretical Physics, UCSB, 2002.VeniaLegendi in Theoretical Physics, TUB, 2001, and in Computational Polymer Physics, Department of Materials, ETH Zurich, 2005. He is a Professor for Computational Polymer Physics, ETH Zurich, since 2006. His research interest includes Computational polymer physics; complex liquids; anisotropic liquids; coarse-graining issues; new simulation methods; nonequilibrium phenomena; polymer brushes, melts, solutions, gels, and networks; dendritic structures; scaling concepts; topology; pattern recognition; molecular dynamics.

Chiara Maccato

Associate Professor , Padova University, Italy

Chiara Maccato obtained her MSc degree in Chemistry with full marks in 1995; PhD in Chemical Sciences in 1999. After a Post-Doc grant, in 2000 she became Assistant Professor at the Department of Chemical Sciences of Padova University, where she is currently an Associate Professor of Inorganic Chemistry. Her main scientific interests are focused on inorganic/hybrid nanoarchitectures for sustainable energy production, environmental remediation, and gas sensing and accordingly, she has been responsible of several research projects/industrial contracts. Since 2005 she is the coordinator of a morphological characterization laboratory and responsible of a research group on multi-functional inorganic nanosystems. She is referee for many international journals/projects and has authored more than 180 papers on international journals.

Ariela Donval

Director, Advanced Optical Filters (AOF), Engineering – Aerospace Division, Elbit Systems Ltd., Isreal

Dr. Ariela Donval carries more than 20 years’ experience in the fields of material and optic sciences. Dr. Ariela Donval is specialized in R&D of nanotechnology-based passive and active optical power control devices, nano-micro technologies, electrooptic devices for telecommunication and nonlinear optics. She held several positions in KiloLambda (2001-2017), last as VP R&D, where she was managing the R&D team and responsible for smart optical devices R&D and production.Since January 2018, KiloLambda’s assets were acquired by Elbit, and R&D group by the head of Dr. Ariela Donval is now a part of Elbit by the name of: Advanced Optical Filters (AOF).

Dr. Ariela Donval received her PhD in optic and photonic, CNET - France Telecom, France (1999), specialized in electro-optic devices for telecommunication and MSc in Material Science in the field of nonlinear optics, Weizmann Institute of Science, Israel (1995). She held an R&D position in the field of nano-micro technology ENS-Cachan, France (1999-2001).

Ejembi John Onah

Professor and Chair, US-EU-Africa-Asia-Pacific and Caribbean Academy of Nanoscience and Nanotechnology(USEACANN), Ithaca, New York

Ejembi John Onah started his career at the early age of 22 years with a year mandatory national youth corps service at Biu, Borno State after graduating from University of Jos, Jos Nigeria in 1985 with bachelor of science in chemistry with honors and a Master of Science in Applied Organic Chemistry in 1993. He further took Chemistry teaching positions at Federal Government Colleges Sokoto and Jos in Nigeria and Benue State Universities as a professor with tenure from 1987-1997. In 1996 he was awarded a prestigious German international scholarship; Katholischer Akademischer Ausländerdienst-KAAD to further his career in chemistry at the ivy league institute, the Max Institute for Plant Physiology Golm, Humboldt University of Berlin and University of Würzburg from 1997-1998. In 1998 he became a scientist at Leibniz Institute for Polymer Research and doctoral student at University of Technology, TU Dresden where he obtained his doctorate in Chemistry summa cum laude in examination in 2001. In 2001 to 2004, he joined Virginia Tech and ivy league Cornell University faculties in Chemistry in USA. As from 2005, Ejembi founded Focus Nanotechnology Africa Inc where he is currently the President/CEO. He is also currently the founding Chairman of US-EU-Africa-Asia-Pacific and Caribbean Nanotechnology Initiative (USEACANI) and US-EU-Africa-Asia-Pacific and Caribbean Academy of Nanoscience and Nanotechnology (USEACANN) as a professor, pioneering the causes of Nano covering 189 countries. He is also founding Editor-In-Chief of peer review journal; Journal Nanotechnology Progress International (JONPI) with several Nobel Laureates as editors.

About Conference


It is with an immense pleasure and a great honor, we would like to welcome you all to the 3rd Global Summit and Expo on Nanotechnology and Nanomedicine to be held during September 18-20, 2019 at Barcelona in Spain. 

The conference is hosted by Linkin Science. These conferences are well crafted and designed by a team of skilled experts. Our conferences are vast expanded into Medical, life sciences, health care, Engineering and other social sciences. Each conference, summit or executive briefing is tailored to the sector, topic and audience need. Our event structure varies depending on issue and market requirements featuring Keynote presentations, Oral talks, Poster presentations, Young research forum, Exhibitions, roundtables and variable formats. Our mission is to bring the researchers on a common platform and provide opportunity for them to interact. This scientific networking helps for the betterment of science by exchanging the ideas in a broader way. Magnifying Scientific Knowledge by Sharing the research and ideas. We believe in accelerating the possibilities of novel discoveries and enhancement in scientific research, by connecting scientific community for knowledge sharing. Join us to redefine and explore new research, to provide a credible source to barter ideas for scientific studies besides transforming the true outcomes of a distinct scientific discovery and grab the attention for rare emerging technologies.

Importance and Scope:

Nanotechnology and Nanomedicine are rapidly expanding by playing a prominent role in many fields. This Conference is a platform to Industry, Academia, Researchers, Innovators to come together to discuss the research activities, advancements, ideas and exhibit Nano products.

Nanotechnology is rapidly gaining traction across a range of industries, from agriculture to water treatment to energy storage. Today, nanotechnology is one of the most innovative, cutting-edge areas of scientific study and it continues to advance at staggering rates. Nanoparticles for chemotherapy drug carriers have made some of the greatest advancements in cancer treatment. By using nanocarriers to treat patients, treatments can focus on targeting cancerous cells and limit the damage to healthy cells. scientists in the nanotechnoloy and nanoagriculture fields are focused on determining how nanosized particles can increase crop and livestock productivity. While nanoagriculture is a more recent application of nanotechnology, the benefits are clear with its “potential to protect plants, monitor plant growth, detect plant and animal diseases, increase global food production, enhance food quality and reduce waste.” Scientists and engineers are focused on applying nanotechology to resolve these issues and make water safe and purified. Nanotechnology has been hailed as the next big thing for decades, but it is only now that it is truly becoming a reality in the medical device space.

Benefits of attending the conference:

Nanotechnology and Nanomedicine 2019 offers a wonderful opportunity to meet and enhance new contacts in the field of Nanotechnology & Materials Science Engineering, by providing mutual collaboration and break-out rooms with tea, Coffee, snacks and lunch for delegates between sessions with invaluable networking time for you. It allows delegates to have issues addressed on Nanotechnology and material science global experts who are up to date with the latest developments in this particular field and provide information on new advancements and other technologies. This International conference features world renowned keynote speakers, plenary speeches, young research forum, poster presentations, technical workshops and career guidance sessions.

Target Audience:

  • Nanomaterials and Nanotechnology Students, Scientists
  • Nanomaterials and Nanotechnology Researchers
  • Nanomaterials and Nanotechnology Associations and Societies
  • Business Entrepreneurs
  • Physicists/Chemists
  • Junior/Senior research fellows of Nanotechnology/ Nanomedicine/ Nano Drug Delivery
  • Nanotechnology Students
  • Directors of Nanotechnology/ Nanomedicine/ Nano Drug Delivery
  • Members of Nanotechnology and Nanomediciney associations.

Scientific Sessions


Nanomedicine and Nano Drug Delivery

Nanomedicine is the medical application of nanotechnology. Nanomedicine ranges from the medical applications of nanomaterials and biological devices, and even possible future applications of molecular nanotechnology such as biological machines. Current problems for nanomedicine involve understanding the issues related to toxicity and environmental impact of nanoscale materials. Functionalities can be added to nanomaterials by interfacing them with biological molecules or structures. The size of nanomaterials is similar to that of most biological molecules and structures; therefore, nanomaterials can be useful for both in vivo and in vitro biomedical research and applications. Thus far, the integration of nanomaterials with biology has led to the development of diagnostic devices, contrast agents, analytical tools, physical therapy applications, and drug delivery vehicles. Nanotechnology has provided the possibility of delivering drugs to specific cells using nanoparticles. The overall drug consumption and side-effects may be lowered significantly by depositing the active agent in the morbid region only and in no higher dose than needed. Targeted drug delivery is intended to reduce the side effects of drugs with concomitant decreases in consumption and treatment expenses. Drug delivery focuses on maximizing bioavailability both at specific places in the body and over a period of time. This can potentially be achieved by molecular targeting by nanoengineered devices. A benefit of using nanoscale for medical technologies is that smaller devices are less invasive and can possibly be implanted inside the body, plus biochemical reaction times are much shorter. These devices are faster and more sensitive than typical drug delivery. The efficacy of drug delivery through nanomedicine is largely based upon: a) efficient encapsulation of the drugs, b) successful delivery of drug to the targeted region of the body, and c) successful release of the drug.

 

Nanotechnology Applications

Researchers are developing customized nanoparticles the size of molecules that can deliver drugs directly to diseased cells in your body.  When it's perfected, this method should greatly reduce the damage treatment such as chemotherapy does to a patient's healthy cells. Nanotechnology holds some answers for how we might increase the capabilities of electronics devices while we reduce their weight and power consumption. Nanotechnology is having an impact on several aspects of food science, from how food is grown to how it is packaged. Companies are developing nanomaterials that will make a difference not only in the taste of food, but also in food safety, and the health benefits that food delivers. Nanotechnology is being used to reduce the cost of catalysts used in fuel cells to produce hydrogen ions from fuel such as methanol and to improve the efficiency of membranes used in fuel cells to separate hydrogen ions from other gases such as oxygen. Companies have developed nanotech solar cells that can be manufactured at significantly lower cost than conventional solar cells. Companies are currently developing batteries using nanomaterials. One such battery will be a good as new after sitting on the shelf for decades. Another battery can be recharged significantly faster than conventional batteries. Nanotechnology may hold the key to making space-flight more practical. Advancements in nanomaterials make lightweight spacecraft and a cable for the space elevator possible. By significantly reducing the amount of rocket fuel required, these advances could lower the cost of reaching orbit and traveling in space. Nanotechnology can address the shortage of fossil fuels such as diesel and gasoline by making the production of fuels from low grade raw materials economical, increasing the mileage of engines, and making the production of fuels from normal raw materials more efficient. Nanotechnology is being used to develop solutions to three very different problems in water quality. One challenge is the removal of industrial wastes, such as a cleaning solvent called TCE, from groundwater. Nanoparticles can be used to convert the contaminating chemical through a chemical reaction to make it harmless. Studies have shown that this method can be used successfully to reach contaminates dispersed in underground ponds and at much lower cost than methods which require pumping the water out of the ground for treatment. Nanotechnology can enable sensors to detect very small amounts of chemical vapors. Various types of detecting elements, such as carbon nanotubes, zinc oxide nanowires or palladium nanoparticles can be used in nanotechnology-based sensors. Because of the small size of nanotubes, nanowires, or nanoparticles, a few gas molecules are sufficient to change the electrical properties of the sensing elements. This allows the detection of a very low concentration of chemical vapors. Current nanotechnology applications in the sports arena include increasing the strength of tennis racquets, filling any imperfections in club shaft materials and reducing the rate at which air leaks from tennis balls. Making composite fabric with nano-sized particles or fibers allows improvement of fabric properties without a significant increase in weight, thickness, or stiffness as might have been the case with previously-used techniques.

 

Nanotechnology and Nano materials

Nanotechnology is used in Biomedical Engineering. The biomedical engineering applications include Biosensors/Biodetection, Photodynamic therapy, Thermotherapy, Surgical blades, Battery technology, Molecular imaging, in vitro diagnostics and many more. Nanotechnology is useful in detecting Chemical and Biological sensors. Nanotechnology can enable sensors to detect very small amounts of chemical vapors. Various types of detecting elements, such as carbon nanotubes, zinc oxide nanowires or palladium nanoparticles can be used in nanotechnology-based sensors. These detecting elements change their electrical characteristics, such as resistance or capacitance, when they absorb a gas molecule. Nanotechnology is also used in sports. The sport of golf has also been impacted by nanotechnology. Nano-composite is replacing traditional materials used in manufacturing of golf clubs, making them lighter and stronger. For example, nanomaterials are used to increase the power and accuracy of the club by lowering its weight and center of gravity. Golf balls have also been modified: applying new materials has allowed the ball to fly along a much straighter path and avoid an uneven spin. Nanowires are structures with a width and depth of a few nanometres or less, but a much longer length. Electrons in these materials are free to travel along the wire, but their motion in the other two directions is governed by quantum mechanics, radically altering the properties of the material. Nanopowders are solid powders of nanoparticles, often containing micron-sized nanoparticle agglomerates. These agglomerates can be redispersed using, for example, ultrasonic processing. Nanoparticle dispersions are suspensions of nanoparticles in water or organic solvents. These dispersions can be used as-is, or diluted with suitable (compatible) solvents. Nanoparticles in dispersions can sometimes settle upon storage, in which case they can be mixed before use. Some surface-functionalized nanoparticles (for example silver and gold) are available as solutions in water or organic solvents. These are "true" solutions, which should not settle or exhibit phase separation if properly stored. Functionalized Nanomaterials illustrates the considerable interest in the development of new molecular probes for medical diagnosis and imaging. Substantial progress was made in the synthesis protocol and characterization of these materials, whereas toxicological issues are sometimes incomplete. Nanoparticle-based contrast agents (CAs) tend to become efficient tools for enhancing medical diagnostics and surgery for a wide range of imaging modalities. Functional carbon-based nanomaterials (CBNs) have become important due to their unique combinations of chemical and physical properties (i.e., thermal and electrical conductivity, high mechanical strength, and optical properties), extensive research efforts are being made to utilize these materials for various industrial applications, such as high-strength materials and electronics. Silver nanoparticle (NP)-based inks represent the most important commercial nanotechnology-derived product and the most widely studied worldwide. To better clarify the motivation of this review, we should therefore focus on the three points highlighted: the raw material (Ag), the morphology it takes (NPs), and the compound through which it is used in practical applications (ink). NanoFoil is the name trademarked by the Indium Corporation for a reactive multi-layer foil material, sometimes referred to as a pyrotechnic initiator of two mutually reactive metals, aluminium and nickel, sputtered to form thin layers to create a laminated foil. On initiation by a heat pulse, delivered by a bridge wire, a laser pulse, an electric. Silver nano prisms have readily tunable surface plasmon resonance in the visible and near IR spectrum. The prism shaped nanoparticles enhances the charge distribution around the particle. The particles cab be tuned by exposing to a precise wavelength of light tunes so they change color and absorb at a desired wavelength. Nanorods, along with other noble metal nanoparticles, also function as theragnostic agents. Nanorods absorb in the near IR, and generate heat when excited with IR light. This property has led to the use of nanorods as cancer therapeutics. A nanotube is a nanometer-scale tube-like structure. A nanotube is a kind of nanoparticle, and may be large enough to serve as a pipe through which other nanoparticles can be channeled, or, depending on the material, may be used as an electrical conductor or an electrical insulator. Nanosphere lithography (NSL) is an economical technique for generating single-layer hexagonally close packed or similar patterns of nanoscale features. Quantum dots (QD) are very small semiconductor particles, only several nanometres in size, so small that their optical and electronic properties differ from those of larger particles. They are a central theme in nanotechnology. Few ways to prepare quantum dots are through Colloidal synthesis, Plasma synthesis, Fabrication, Viral assembly, Electrochemical assembly, Bulk-manufacture, Heavy-metal-free quantum dots

 

Nano Particles and Nano Composites

Protein nanoparticles are used for therapeutic protein delivery. Therapeutic proteins can face substantial challenges to their activity, requiring protein modification or use of a delivery vehicle. Nanoparticles can significantly enhance delivery of encapsulated cargo, but traditional small molecule carriers have some limitations in their use for protein delivery. Nanoparticles made from protein have been proposed as alternative carriers and have benefits specific to therapeutic protein delivery.  At the same time, Liquid filled nanoparticles are also used as a drug delivery tool for protein therapeutics. The use of biodegradable polymeric nanoparticles (NPs) for controlled drug delivery has shown significant therapeutic potential. Concurrently, targeted delivery technologies are becoming increasingly important as a scientific area of investigation. Albumin nanoparticle formulations including a series of potential drugs for treating cancers, rheumatoid arthritis or pulmonary fibrosis, such as, paclitaxel, doxorubicin, TRAIL (TNF-related apoptosis inducing ligand) or tacrolimus, were developed by using nanoparticle albumin bound (Nab™) technology. Nanoscale drug delivery systems using liposomes and nanoparticles are emerging technologies for the rational delivery of chemotherapeutic drugs in the treatment of cancer. Their use offers improved pharmacokinetic properties, controlled and sustained release of drugs and, more importantly, lower systemic toxicity. Cerium oxide nanoparticles (CNPs) are novel synthetic antioxidant agents proposed for treating oxidative stress-related diseases. The synthesis of high-quality CNPs for biomedical applications remains a challenging task. A major concern for a safe use of CNPs as pharmacological agents is their tendency to agglomerate. Recently, CeO2-NPs have been synthesized through several bio-directed methods applying natural and organic matrices as stabilizing agents in order to prepare biocompatible CeO2-NPs, thereby solving the challenges regarding safety, and providing the appropriate situation for their effective use in biomedicine. Several types of polymer coatings for iron oxide nanoparticles have been systematically explored using a novel high-throughput screening technique to optimize coating chemistries and synthetic conditions to produce nanoparticles with maximum stability. Polymeric micelles nanocarriers represent an effective delivery system for poorly water-soluble anticancer drugs. With small size (10–100 nm) and hydrophilic shell of PEG, polymeric micelles exhibit prolonged circulation time in the blood and enhanced tumor accumulation. A new high-performance anode structure based on silicon-carbon nanocomposite materials could significantly improve the performance of lithium-ion batteries used in a wide range of applications from hybrid vehicles to portable electronics. A nanocomposite is a matrix to which nanoparticles have been added to improve a particular property of the material. The properties of nanocomposites have caused researchers and companies to consider using this material in several fields. Some other applications of Nanocomposites include using graphene to make composites with even higher strength-to-weight ratios, Making lightweight sensors, to make flexible batteries, Making tumors easier to see and remove.

 

Carbon Nanomaterials, Devices and Technologies

Carbon nanomaterials have a unique place in nanoscience owing to their exceptional electrical, thermal, chemical and mechanical properties and have found application in areas diverse as composite materials, energy storage and conversion, sensors, drug delivery, field emission devices and nanoscale electronic components. Conjugated carbon nanomaterials cover the areas of carbon nanotubes, fullerenes and graphene. Carbon nanotubes (CNTs) have exceptional physical properties that make them one of the most promising building blocks for future nanotechnologies. They may in particular play an important role in the development of innovative electronic devices in the fields of flexible electronics, ultra-high sensitivity sensors, high frequency electronics, opto-electronics, energy sources and nano-electromechanical systems (NEMS)

Graphene and its potential applications

Graphene is one of the forms of carbon. Like diamonds and graphite, the forms (or 'allotropes') of carbon have different crystal structures, and this gives them different properties. Graphene is the basic 2D (two dimensional) form of a number of 3D allotropes, such as graphite, charcoal, fullerene and carbon nanotubes. Potential graphene applications include lightweight, thin, flexible, yet durable display screens, electric/photonics circuits, solar cells, and various medical, chemical and industrial processes enhanced or enabled by the use of new graphene materials. Graphene nanoribbons (GNRs, also called nano-graphene ribbons or nano-graphite ribbons) are strips of graphene with width less than 50 nm.

 

Nano Biotechnology and Green Nanotechnology

Nanobiotechnology, bionanotechnology, and nanobiology are terms that refer to the intersection of nanotechnology and biology. Given that the subject is one that has only emerged very recently, bionanotechnology and nanobiotechnology serve as blanket terms for various related technologies. Nano-biotechnology refers to the science of integration between biology and nanotechnology. This being a very emerging branch, nanobiology and bionanotechnology are its sister terms. Various concepts that are being emerged from nanobiotechnology are nanodevices, nanocantilevers and nanoparticles. Green nanotechnology refers to the use of nanotechnology to enhance the environmental sustainability of processes producing negative externalities. It also refers to the use of the products of nanotechnology to enhance sustainability. It includes making green nano-products and using nano-products in support of sustainability.

 

Microtechnology and Nano Robotics

Microtechnology is the use of compact, or very small, technical devices. Microtechnology embraces microcomputer parts, space microdevices, microsurgery, and microelectronics. Both microfilm and microfiche, which store information on film, are also examples of microtechnology; microfiche generally stores more than microfilm. The term "micro," derived from the Greek word mikros, meaning small, is used to describe something that is unusually small. Technology is the application of inventions and discoveries to meet needs or obtain goals. Microtechnology has the advantages of taking up less space, using less construction material, and costing less money. Initial manufacturing of such small components requires invention or reapplication of existing technology, a trained manufacturer, and precise manufacturing conditions. The resulting smaller equipment is less expensive to transport and store; this aspect of microtechnology makes it ideally suited for use in outer space. Nanorobotics describes the technology of producing machines or robots at the nanoscale. 'Nanobot' is an informal term to refer to engineered nano machines. Though currently hypothetical, nanorobots will advance many fields through the manipulation of nano-sized objects.

 

Nano electronics, Nano sensors and Nano coatings

Nanoelectronics refer to the use of nanotechnology in electronic components. The term covers a diverse set of devices and materials, with the common characteristic that they are so small that inter-atomic interactions and quantum mechanical properties need to be studied extensively. Nanosensors are chemical or mechanical sensors that can be used to detect the presence of chemical species and nanoparticles, or monitor physical parameters such as temperature, on the nanoscale. They also find use in medical diagnostic applications. The term nanocoating refers to nanoscale (i.e. with a thickness of a few tens to a few hundreds of nanometers) thin-films that are applied to surfaces in order create or improve a material's functionalities such as corrosion protection, water and ice protection, friction reduction, antifouling and antibacterial properties, self-cleaning, heat and radiation resistance, and thermal management.

 

Nano photonics and optics

Nanophotonics or nano-optics is the study of the behavior of light on the nanometer scale, and of the interaction of nanometer-scale objects with light. It is a branch of optics, optical engineering, electrical engineering, and nanotechnology. It often (but not exclusively) involves metallic components, which can transport and focus light via surface plasmon polaritons. Metamaterials are artificial materials engineered to have properties that may not be found in nature. They are created by fabricating an array of structures much smaller than a wavelength. The small (nano) size of the structures is important: That way, light interacts with them as if they made up a uniform, continuous medium, rather than scattering off the individual structures.

 

Materials for Energy Storage and Conversion

Materials hold the key to many advanced energy technologies including solar cells, batteries, fuel cells, and catalysis.  With the increasing need for cost-efficient methods for energy storage and conversion, it has become imperative to accelerate the rate at which energy-related materials are developed.  We use fast, scalable computational methods to identify and design new materials for energy storage and conversion. Renewable and clean energy technologies are central to the sustainable development of mankind. Therefore, research and development of new materials for energy conversion and storage are at the forefront of materials science and engineering.

 

Nanotoxicology and Nano Pharmaceutics

Nanotoxicology is a sub-specialty of particle toxicology. Nanomaterials appear to have toxicity effects that are unusual and not seen with larger particles. For example, even inert elements like gold become highly active at nanometer dimensions. Nanotoxicological studies are intended to determine whether and to what extent these properties may pose a threat to the environment and to human beings. Nanoparticles have much larger surface area to unit mass ratios which in some cases may lead to greater pro-inflammatory effects in, for example, lung tissue. In addition, some nanoparticles seem to be able to translocate from their site of deposition to distant sites such as the blood and the brain. Nanoparticles can be inhaled, swallowed, absorbed through skin and deliberately or accidentally injected during medical procedures. They might be accidentally or inadvertently released from materials implanted into living tissue. One study considers release of airborne engineered nanoparticles at workplaces, and associated worker exposure from various production and handling activities, to be very probable. Today’s, nanotechnology is integral part of pharmaceutics and Drug delivery system.  In  pharmaceutical  science  size  is  an  important  matter  because  it influences    the    drugs    bioavailability,toxicity reduction and better formulation.  Nano size enhances drug performance many fold. It provides intelligent   systems,   devices   and materials   for   better   pharmaceutical applications. 

 

Environmental and Green Materials

Green home design includes building for energy efficiency, including the use of renewable energy sources such as wind, water, or solar; creating a healthy indoor environment; implementing natural ventilation systems; and using construction materials that minimise the use of volatile organic compounds (VOCs) in the home. The use of materials and resources that are sustainable, have low embodied energy, and produce a minimal environmental impact are key elements in green construction, as is the efficient use of water by appliances, faucets and shower heads, the recycling of grey water, and the reuse of rain water for landscaping and other non-potable purposes. When considering the environmental properties of materials, look for materials that are abundant, non-toxic, have low embodied energy, and meet or exceed regulations.

Market Analysis


Nanotechnology is referred to as visualization, manipulation and modeling of atoms, molecules and macro molecular structure to create unique desired structures with enhanced properties and functionalities. Nanotechnology is one of the essential segment of advanced materials and chemicals industry due to the large R&D funding from a large number of federal agencies. The Nanotechnology market though well established, it is one of the fastest growing markets in the chemicals and materials. The market has evolved significantly over a period of time primarily due to incessant development and integration of technologies.

As of 2017, so much progress has been made in nanotech research and development that commercialization is accelerating broadly. One factor boosting the adoption of nanotechnology is an increase in the manufacture and availability of carbon nanotubes, a basic nanomaterial that can be used in a wide variety of manufactured goods. These nanotubes have been shown to have highly valuable qualities, including incredible strength, extremely light weight and high conductivity of electricity. As nanotube supplies increase and costs drop, use will increase significantly. (Prices have fallen from hundreds of dollars per gram in the late 1990s to only a few dollars per gram today—depending on the exact specifications of the nanotube).  Investment in nanotechnology research and the market for nanotech products have expanded steadily.

The U.S. government alone proposed $1.443 billion in nanotech research grants and projects for fiscal 2017. This was up significantly from only $0.464 billion in 2001. This budget aids the industry primarily through grants made via the Department of Health and Human Services, the National Science Foundation, the Department of Energy and the Department of Defence.

Nanofibers market has an untapped potential for future growth owing to its superior capabilities such as high strength, optical and electrical quality and uniformity of layers. Manufacturers of nanofibers are constantly investing huge amounts in evolving new production techniques to improve the capabilities. Nano enabled packaging for food and pharmaceuticals industry has been growing at a double digit CAGR in the past five years and is witnessed to continue growing at robust rate. Nanocomposites are anticipated dominate the global nanotechnology market by type and are estimated to control around 60% of the total market revenue by type in 2021. However, nanoclays and nanomagnetics are estimated to attain the fastest growth rate during the forecast period.

The nanotechnology market is driven by the ever increasing application base of and increasing emphasis on renewable and sustainable energy sector with the use of low cost materials. Moreover, initiatives of government for nano R&D and investments of technological giants propel the commercialization of next generation nanomaterials. The nanotechnology market is driven by increased demand from the end-use industries such as electronics, textile, pharmaceutical, biotechnology, aerospace, food and many others. Growing demand for efficient and cost-effective healthcare treatment and diagnostics propels the adoption of nanomaterials in drug delivery and medical devices sector. This is yet another reason which will drive the growth of nanotechnology in the near future.

Nanotechnology is a relatively new materials science that is slowly beginning to revolutionize many sectors of manufacturing. The long term outlook is exceptionally promising.

Only a small number of consumers or business executives realize the extent to which nanotech is going to change the materials they use every day.

The report explains that global nanotechnology market is segmented on the basis of types, application and geography. Based on types, nanotechnology is classified into:

  • Nanocomposites
  • Nanoparticles
  • Nanotubes
  • Nanoclays
  • Nanofibers
  • Nanoceramics
  • Nanomagnetics

Nanotechnology finds their applications into a variety of end used industries which include

  • Electronics & Semiconductor
  • Pharmaceuticals
  • Biotechnology
  • Textile
  • Military
  • Healthcare
  • Food
  • Automobiles
  • Telecom & IT
  • Aerospace

Each of these segments is further broken down to give an in-depth analysis of the market. The nanotechnology market report analyses the nanotechnology in various applications and covers the market demand with respect to regions.

Top Nanotechnology Universities, Organisations & Laboratories in Europe

  • Istituto Italiano di Tecnologia (IIT)
  • CIVEN (Coordinamento Interuniversitario Veneto per le Nanotecnologie)           
  • National Nanotechnology Laboratory
  • Veneto Nanotech
  • CNR-IFN
  • LATEMAR (Laboratorio di Tecnologie Elettrobiochimiche Miniaturizzate per l'Analisi e la Ricerca)
  • Polytechnic University of Turin
  • University of Milano Bicocca
  • University of Modena and Reggio Emilia
  • Carbon Nanotechnology Group
  • Carbon Nanotechnology Group
  • UniPerugia
  • UniVenezia
  • UniBologna
  • UniTrieste

Top Nanotechnology Companies and Industries in Europe

  • Tec Star
  • MBN Nanomaterialia
  • Nano-CAT
  • SCRIBA Nanotecnologie
  • Tethis
  • Nanto Protective Coating
  • FIAT
  • Cluster Veneto

Scientific Sessions

Abstract Submission : December 11, 2018

Early Bird Registration : December 13, 2018

  • Nanomedicine and Nano Drug Delivery
  • Nanotechnology Applications
  • Nanotechnology and Nano materials
  • Nano Particles and Nano Composites
  • Carbon Nanomaterials, Devices and Technologies
  • Graphene and its potential applications
  • Nano Biotechnology and Green Nanotechnology
  • Microtechnology and Nano Robotics
  • Nano electronics, Nano sensors and Nano coatings
  • Nano photonics and optics
  • Materials for Energy Storage
  • Nanotoxicology and Nano Pharmaceutics
  • Environmental and Green Materials
  • nanoengineered devices

Registration Categories

Abstract Submission : December 11, 2018

Early Bird Registration : December 13, 2018

Awards

GSENN (Global Summit & Expo on Nanotechnology & Nanomedicine) anticipates being able to provide funding to assist some attendees coming from Lower and Middle Income Countries to present their science at the summit.  Participants desiring to be considered for one of these awards need to specify their interest after their submission of the required abstract. Selected participants will receive a cash award of $250 to $1,000 (USD) scholarship Under the 3 categories

  1. Outstanding Submitted Abstract of the GSENM.
  2. Best Research of the conference as evaluated by the Scientific Committee
  3. Young Researcher Award under YRF category to encourage budding scientists/ researcher.

Decisions will be made based on evaluation of the submitted abstract by the Scientific Committee and amount of funds available. The decision made by the Scienctific Committe would be final. We want you to grab this opportunity and participate in the conference...!

Past Conference Report

We gratefully thank all our wonderful Speakers, Conference Attendees, Students, Media Partners, Associations and Exhibitors for making Nanotechnology and Material Science 2018 Conference the best ever!

1st Global Summit on Nanotechnology and Material science, hosted by the Linkin Science was held during December 04-06, 2017 at Grand Excelsior Hotel Bur Dubai in Dubai and 2nd Nanotechnology and Material Science conference during August 27-28, 2018 at Hotel Mercure Roma West at Rome in Italy and is based on the theme “Propel New Technologies by Integrating Nanoscience and Material Structures" which got magnificent response. With the support and guidance from Scientific Committee Members and amazing presentations of all participants along with Scientists, Researchers, Students and leaders from various fields of Nanotechnology and Material Science has made this event a grand success.

With the success of these 1st and 2nd international conferences, we would be glad to extend you a warm welcome to attend our 3rd Global Summit & Expo on Nanotechnology and Nanomedicine conference during September 18-20, 2019 at Barcelona in Spain.