Programs

Home/Programs

Day 1 : Oct 06,2025
Day 1 Day 2 Day 3
Agenda Download
Keynote Speakers
This talk will focus on the description of surface functionalized ultrafine CoFe2O4 nanoparticles (NPs), with mean diameter ~ 5 nm. The investigated properties include DC magnetization and AC susceptibility measurements over the temperature range of 4 – 400 K. All evaluated NPs present the same CoFe2O4 core, with different molecular surface coatings, increasing gradually the number of carbon atoms in the coating layer, in the following list: glycine (C2H5NO2), alanine (C3H7NO2), aminobutanoic acid (C4H9NO2), aminohexanoic acid (C6H13NO2), and aminododecanoic acid (C12H25NO2). Importantly, samples were intentionally fabricated in order to modulate the core-core magnetic dipolar interaction, as the thickness of the coating layer increases with the number of carbon atoms in the coating molecule. The magnetic data of the uncoated CoFe2O4 NPs it is also presented for comparison. All investigated CoFe2O4 NPs (coated and uncoated) are in magnetically blocked state at room temperature as evidenced by ZFC/FC measurements and the presence of hysteresis with ~700 Oe coercivity. Low temperature magnetization scans show slightly constricted hysteresis loops with coercivity decreasing systematically while the number of carbon atoms in the coating molecule decreases, possibly resulting from differences in magnetic dipole coupling between NPs. Large thermomagnetic irreversibility, slow monotonic increase in the FC magnetization and non-saturation of the magnetization give evidence for the cluster glass (CG) nature in the CoFe2O4 NPs. The out of phase part of AC susceptibility for all samples shows a clear frequency dependent hump which is analyzed to distinguish superparamagnetic (SPM), cluster glass (CG) and spin glass (SG) behavior by using Néel-Arrhennius, VogelFulcher, and power law fittings
Biography:
Hari Shanker Sharma, FRSM (UK), Director of Research (Int. Expt. ECNSIR), University Hospital, Uppsala University is Professor of Neurobiology (MRC), Docent in Neuroanatomy (UU) and is currently affiliated with Department of Surgical Sciences, Division of Anesthesiology and Intensive Care Medicine, Uppsala University, Sweden. Hari Sharma was born on January 15, 1955 in an Industrialist town Dalmianagar (Bihar), India. He did his Bachelor of Science with Honors from the prestigious L. S. College Muzaffarpur in 1973 and secured 1st position in his batch. On his meticulous works on the Blood Brain barrier and Brain edema (2000–2003) Dr. Sharma earned the prestigious title of “Docent in Neuroanatomy” of Medical Faculty, Uppsala University in April 2004. Currently his main research interest is Neuroprotection and Neuroregeneration, in relation to the Blood-brain barrier in stress, trauma, and drugs of abuse in health and disease. Dr. Sharma on his research on brain pathology and neuroprotection in different models received the prestigious awards from The Laerdal Foundation of Acute Medicine, Stavanger, Norway, in 2005 followed by Distinguished International Scientists Collaboration Award by National Institute on Drug Abuse (NIDA), Baltimore, MD (2006–2008). His recent work on 5-HT3 receptor mediated neuroprotection in morphine withdrawal induced neurotoxicity won the coveted prize of Best Investigator Award 2008 and Best Scientific Presentation by European Federation of the International Association for Study of Pain (ISAP), and Awarded during their VI Annual Meeting in Lisbon, September 9–12, 2008. Dr. Sharma with Honorary Doctorate of Medical Sciences in 2009. Dr. Sharma’s work over 30 years on the blood-brain barrier and brain edema won him the US Neurosurgeon Dr. Anthony Marmarou Award (2011) by the International Brain Edema Society at their 15th Congress in Tokyo, Japan, November 20–24, 2011.  Dr. Sharma is on board of various International Journals including CNS and Neurological Disorders-Drug Targets, USA, Journal of Neurodegeneration and Regeneration, USA (2009–) and is associate editor of Journal of Nanoscience and Nanotechnology (Nanoneuroscience 2006–), USA, Review Editor—Frontiers in Neuroengineering (2007–), Frontiers in Neurorestoratology, and Associate Editor of Frontiers in Aging Neuroscience (2008–), Frontiers of Fractal Physiology (2010–), Switzerland, Journal of Neurorestoratology, Dove Medical press, London, UK (2012–), Webmed Central, Neurology Faculty, Advisory Board Member (2010–), World Journal of Pharmacology (2011–), Journal of Physical Medicine and Rehabilitation, USA (2012–). Dr. Sharma served as volume editor of several progress in Brain research series (Volumes 104, 115, 162 and 180), International review of Neurobiology (Volume 82 and 102) and other Springer Volumes on Spinal cord injury (1988) and Handbook of Neurochemistry (2009) apart from stand alone books (Elsevier, Springer and Academic Press since 1994). Dr. Hari Sharma is invited to join several National Academies of repute including New York Academy fo Science, USA (since 1994–); International Academy of Stress, New York (2003–), Swedish Academy of Pharmaceutical Sciences (2010–). Dr. Sharma has served as an expert evaluator and advisor to various Boards, Councils and Institutions for their Research Grants including Wellcome Trust, London, UK (2011–); Catalan Agency for Health Information and Quality, TV3 (2010–), European Commission Projects (2002–), European Nanomed Council (2009–), Ministry of Health Science Foundation; Medical research Council and University Commission of Grants in various countries in Europe, USA, UK, Canada, Hong Kong, Singapore and in Australia

Abstract:
Concussive head injury (CHI) is one of the major risk factors in developing Alzheimer’s disease (AD) in military personnel at later stages of life [1]. Breakdown of the blood-brain barrier (BBB) in CHI leads to extravasation of plasma amyloid beta protein (AbP) into the brain fluid compartments precipitating AD brain pathology [2]. Oxidative stress in CHI or AD is likely to enhance production of nitric oxide indicting a role of its synthesizing enzyme neuronal nitric oxide synthase (NOS) in brain pathology [3]. Thus, exploration of the novel roles of nanomedicine in AD or CHI reducing NOS upregulation for neuroprotection are emerging. Recent research shows that stem cells and neurotrophic factors play key roles in CHI induced aggravation of AD brain pathologies. Previous studies in our laboratory demonstrated that CHI exacerbates AD brain pathology in model experiments. Accordingly, it is quite likely that nanodelivery of NOS antibodies together with cerebrolysin and mesenchymal stem cells (MSCs) will induce superior neuroprotection in AD associated with CHI. In this review, co-administration of TiO2 nanowired cerebrolysin- a balanced composition of several neurotrophic factors and active peptide fragments, together with MSCs and monoclonal antibodies (mAb) to neuronal NOS is investigated for superior neuroprotection following exacerbation of brain pathology in AD by CHI based on our own investigations. Our observations show that neurotrophic factors, MSCs and neuronal NOS play key roles in brain pathology of AD exacerbated by CHI, not reported earlier.


Biograph:

24    years of experience in Health Care Industry, working with Globe multinational companies in 3 different markets (Africa, middle East Turkey, and Asia Pacific) with multinational corporation.  He recived Biomedical Engineering with Excellent Honours , also received MIBA (Master International Business Administration) from ESLSCA France @ Strategy + Marketing
Certified from   ISRRT & BRACCO Education Licensing for Radiology Imaging certified. Certified Lean Six Sigma for management (green belt) . Currently Business development manager UNILABS/Tibbiyah SAUDI ARABIA ,  sever experience at Medical  Imaging / oncology Centres as a Consultant to improve ROI, Clinical outcome, increase operation efficiency, patient’s workflow optimization and control/reduced cost. Expert in Cardiology / Neurology and Oncology practice at hospital landscape.  

Abstract:

Radiomics and artificial intelligence (AI) are revolutionizing the field of medical imaging, offering unprecedented opportunities for enhanced diagnosis, prognosis, and treatment planning. This talk will explore the transformative impact of these technologies on clinical practice and research. Radiomics involves the extraction of quantitative features from medical images, enabling the conversion of visual data into high-dimensional, mineable data. These features can reveal underlying pathophysiological processes that are not discernible to the naked eye, leading to more accurate and personalized patient care. By integrating radiomics with AI, particularly machine learning algorithms, we can develop predictive models that improve diagnostic accuracy and patient outcomes. AI in imaging leverages deep learning techniques to analyze vast amounts of data, automating the detection and characterization of abnormalities. This capability not only enhances the efficiency and accuracy of radiological interpretations but also addresses the growing demand for imaging services in healthcare systems. AI algorithms can assist in detecting diseases at earlier stages, optimizing treatment plans, and monitoring disease progression with greater precision. The synergy between radiomics and AI holds the promise of advancing precision medicine. This talk will highlight key developments in the field, including the application of AI in oncological imaging for tumor characterization, the prediction of treatment responses, and the assessment of disease progression. Furthermore, it will address the challenges and future directions in implementing these technologies, such as data standardization, validation, and integration into clinical workflows. In conclusion, the fusion of radiomics and AI in medical imaging is set to revolutionize healthcare, providing clinicians with powerful tools for better patient management. This talk aims to provide an overview of the current landscape, recent advancements, and future prospects of radiomics and AI in imaging, underscoring their potential to enhance patient care and outcomes.
 
Biography:
Dr. Mònica Mir received the Degree in Chemistry from University Rovira i Virgili, Spain in 1998. In 2006 she received her PhD in biotechnology in the same University. She realized different predoctoral stages at the Institute of Microelectronic in Demokritos, University of Bath and National Hellenic Research Foundation. From 2007, she held a postdoctoral position in Max Planck Institute for Polymer Research, Germany. Since 2008, she joins the Institute for Bioengineering of Catalonia (IBEC), Spain as Senior CIBER researcher, combined with her teaching as associate professor at the University of Barcelona. Along her carrier she was managing European, National and industrial research projects, supervising PhD ad Master students and collaborating in congresses organization as coordinator and scientific committee. Her main scientific interests are focused on electrochemical biosensor, integrated in lab-on-a-chip and point of care technologies, implantable sensors, and organ-on-a-chip for biomedical applications.
Abstract:
Nanotechnology is a cutting-edge field that spans many possibilities for the study and treatment of different diseases. A key tool recently developed in biomedical engineering research thanks to this technology is implantable sensors.The development of miniaturized implantable biosensors in the human body has revolutionized the field of medicine in terms of diagnosis, treatment and monitoring of numerous conditions and diseases, such as cardiovascular disorders and metabolic problems. One of the great advances that these sensors have introduced is their ability to monitor clinical data practically in real time, obtaining records of the body's biophysical and biochemical parameters in a continuous way and for extended periods. This talk will present an overview of implantable sensors in blood vessels, followed by our developments in this field for different applications, such as ischemia monitoring for fetal growth restriction monitoring and cardiac disease biomarkers for an early diagnosis. Future trends and the advantages and limitations of this technology will be discussed.
 
Biography:
Aruna Sharma (nee Bajpai) W/O Hari Shanker Sharma is currently working as Medical Administrator in Uppsala University Hospital, After graduating in Indian Medicine After went to Free University Berlin, University Hospital, Kilinikum Steglitz, West Berlin (at that time) in Germany (1989-1991) She joined Department of surgical Sciences, University Hospital in April 2004. She is actively working on Nanoneurotoxicity of engineered metal nanoparticles and silica dust in animal models of stress and brain injury sponsored by European Aerospace of Research & Development (EOARD), London, UK  This research works was acclaimed at Society for Neuroscience Meeting in Washington DC Nov 12-16, 2011. Based on her research in Nanoneurosciences she is nominated as member of Swedish Academy of Pharmaceutical Sciences, Stockholm in 2011. and enrolled her in prestigious top 10 Women administrators who set the standards by International Women review Board, USA in 2010. She is also the acquisition editor of key neuroscience journals namely American Journal of Neuroprotection and Neuroregeneration (AJNN) and Journal of Nanaoneuroscience (JNS) published by American Scientific Publishers, Los Angeles, CA, USA. 7th Global College of Neuroprotection and Neuroregenartion (GCNN) Marc 3-7, Stockholm, Sweden, 8th GCNN Congress, Amman, Jordan, April 22-25, 2011, 9th GCNN Congress in Xi’an, China, May 3-7, 2012. She is the guest editor of Journal of Nanoneuroscience April 2012; Central Nervous System Neurological Disorders drug Target Feb 2012 

Abstract:
Sleep deprivation (SD) induces amyloid beta peptide and phosphorylated tau deposits in the brain and cerebrospinal fluid together with altered serotonin metabolism [1]. Thus, it is likely that sleep deprivation is one of the pre-disposing factors in precipitating Alzheimer’s disease (AD) brain pathology [2]. Our previous studies indicate significant brain pathology following sleep deprivation or AD [3]. In this investigation nanodelivery of cerebrolysin together with monoclonal antibodies to amyloid beta peptide (AbP), phosphorylated tau (p-tau) and tumor necrosis factor alpha (TNF-a) in sleep deprivation induced superior neuroprotection in AD exacerbated by sleep deprivation is discussed based on our own investigations. Our results suggest that nanowired delivery of monoclonal antibodies to AbP with p-tau and TNF-a profoundly induces superior neuroprotection in brain pathology in AD exacerbated by sleep deprivation, not reported earlier. There was a significant reduction in the blood-brain barrier (BBB) breakdown, brain edema formation and neuropathological consequences in AD with sleep deprivation caused by combined nanowired delivery of the above agents as compared to saline treatments. The possible mechanism of neuroprotection is discussed. 

Biography:
Paulo C. DE MORAIS, PhD, was full Professor of Physics at the University of Brasilia (UnB) Brazil up to 2013, Appointed as UnB’s Emeritus Professor (2014), Appointed as Guest Professor of Huazhong University of Science and Technology – China (2011), Visiting Professor at Huazhong University of Science and Technology (HUST) – China (2012-2015), Appointed as Distinguished Professor at Anhui University (AHU) – China (2016-2019), Appointed as Full Professor at Catholic University of Brasília (UCB) Brazil (2018), Appointed as CNPq-1A Research Fellowship since 2010. 2007 Master Research Prize from UnB, 2008-member of the European ERA NET Nanoscience Committee, Member of the IEEE-Magnetic Society Technical Committee, Senior Member of the IEEE Society, 2012 China’s 1000 Foreign Expert Recipient, and 2012 Academic Excellence Award from Brazilian Professor’s Union. He held two-years (1987-1988) post-doc position with Bell Communications Research – New Jersey, USA and received his Doctoral degree in Solid State Physics (1986) from the Federal University of Minas Gerais – Brazil. He graduated in both Chemistry (1976) and Physics (1977) at UnB. Professor Morais is member of the Brazilian Physical Society and the Institute of Electrical and Electronics Engineers – IEEE. He has served as referee for more than 50 technical journals, takes part of the Editorial Board of more than 15 technical journals and has conducted research on nanomaterials for over 40 years. He has delivered 170 Invited Talks all over the World. He is known for his research in preparation, characterization and applications of nanosized materials (magnetic fluid, magnetoliposome, magnetic nanoemulsion, magnetic nanocapsule, magnetic nanofilm, magnetic nanocomposite, nanosized semiconductors, polymeric dots, carbon dots, and graphene quantum dots). With about 500 published papers in peer reviewed journals, more than 12,500 citations and 16 patents, he has appeared in recent World ranking of top scientists, such as 2020-Stanford, 2022-Research.com, 2023-AD Scientific Index, and 2023-Research.com.

Abstract:
 
This plenary talk presents a prospective immersion on the Hill’s model, introduced more than a century ago, aiming to explain the binding of oxygen molecules to hemoglobin and subsequently used to explain a huge variety of biological data. Evaluation of cell viability challenged by a particular bioactive compound, including bioactive nanomaterials, is among the experiments Hill’s model has been applied. Nevertheless, even after half of a century has passed since the “NANO” term was coined and introduced into the scientific literature, only recently emerged a proposal on how to incorporate the morphological characteristics (mean size and size dispersity) of a nanomaterial in the description of in vitro bioassays, as for instance cell viability assays. Moreover, in recent years, the standard Hill’s model has been used to describe cell viability assays performed with nanomaterials. In view of this long-standing gap in the literature, the present talk aims to present a recently-developed Hill-inspired model that successfully accounts for the description of MTT assays performed with nanomaterials, emphasizing the impact of the mean size and size dispersity in the biological response. The concept of “biological polydispersity” of a nanomaterial is then introduced, meaning the size characteristics of a nanomaterial while recognized by a particular biological assay. Last, but not least, for a nanomaterial, the “biological polydispersity” is compared with the morphological polydispersity, the latter assessed from high-resolution microscopy micrographs.
Biography:
Dr. Malathy Batumalay earned her master’s degree in engineering from the University Malaya, Malaysia, and subsequently pursued her PhD in Photonics Engineering at the same institution. Her research focuses on lasers, fiber optics, and fiber sensors. Previously, she innovated fiber optics into sensors capable of detecting changes in relative humidity and chemical solutions. She collaborates with both local and international researchers to delve deeper into the behavior and characteristics of fiber optics sensors and plasmonic sensors, resulting in numerous high-quality publications in relevant journals. Additionally, she actively serves as a reviewer for several journals and holds a committee position in the Optical Society of Malaysia (OSM), where she contributes to activities involving young researchers. Furthermore, she is also registered as a professional engineer with the Board of Engineer Malaysia (BEM) and as a Chartered Engineer with The Institution of Engineering and Technology (IET).  Presently associated with a prestigious private university in Malaysia, renowned for its expertise in Communication, Networking, and Cloud Computing, she holds pivotal leadership positions. As the Director of the Center for Data Science and Sustainable Technologies, the Deputy Chair of the University Research Committee, and the Chief Internal Auditor for Malaysia Research Assessment, Dr. Batumalay epitomizes academic excellence. Her fervent aspiration is to engage with emerging talents and prospective research candidates, thereby enhancing the academic landscape. 

Abstract: 
Surface plasmon resonance sensors have shown great growth in the last few decades. Surface plasmon resonance sensors have good sensitivity and fine resolution which made them suitable for bio-medical application and industrial quality control. However, surface plasmon resonance sensor face the challenges of costly construction, complex data processing, cross sensitivity, and the need for specialized interrogator setup. Use of machine learning algorithms can ease some of these challenges. In this brief review, the sensing principal of surface plasmon resonance sensors is discussed. Then current state of machine learning algorithms in surface plasmon resonance sensing is presented. This paper is concluded by the potential future direction of using surface plasmon resonance sensing with machine learning in building compact, affordable, and easy-to-use sensor. Here, the speaker will discuss the sensing principle of surface plasmon resonance sensors, the current challenges faced by surface plasmon resonance sensors that can be addressed by Machine learning technologies. The use of machine learning is to improve the sensing performance of surface plasmon resonance sensors and the machine learning algorithms used are discussed in detail.
Biography: 
RamaGopal V Sarepaka has been serving as the President of R&D Operations & DTM at IR Optics (Optics & Allied Engineering Pvt. Ltd., Bengaluru, India) since January 2017. Prior to this, he held the position of Senior Vice President at Precision Optical Industry, Mumbai, India, from 2015 to 2016.From 2009 to 2015, he contributed his expertise as a Professor at the Academy of Scientific & Industrial Research (AcSIR), under the Government of India. Between 2011 and 2015, he also served as the Chief Scientist at CSIR-CSIO, Chandigarh, India, a federally funded R&D laboratory.
His extensive career began as a Scientist at CSIR-CSIO, Chandigarh, India, where he worked from 1983 to 2011. Earlier in his career, from 1978 to 1983, he was a Senior Research Fellow, completing his Masters and Doctoral studies at the Indian Institute of Technology (IIT), Delhi, India.

Abstract:
Majority of Laser Application-related Precision Optical Systems deploy non-spherical optical surfaces. These novel optical surfaces are precision engineered by using the Diamond Turning Machining (DTM) to meet the desired weight-footprint-performance criteria.
 DTM allows high precision surfaces to be manufactured quickly and efficiently. As part of Precision Engineering envelope, Diamond Turn Machining (DTM) also involves two un-separable dimensions of material processing viz., deterministic fabrication and error free metrology. The need to qualify the fabricated component for its adherence to both dimensions and surface quality within prescribed tolerance ranges necessitates this holistic treatment of surface measurement. This qualification involves both surface metrology and surface characterization.Often these two terms, metrology and characterization are used without differentiation in between. However, it is necessary to bring clarity in this matter, by a comprehensive discussion and clear understanding of the surface features as per desired quality criteria.Metrology refers to broad (physical) measurement of the geometrical features and surface features of the component fabricated. Characterization refers to a holistic approach of assessing the features’ departures from the specifications, analyzing them in relation with each other, with inputs for their possible reduction by process optimization.
 The precision surfaces generated by DTM are generally assessed a) for their dimensional accuracies (whether or not, they met the specified geometrical dimensions within the prescribed tolerances) and b) for their surface quality criteria (in terms of form, figure and finish). A well-planned evaluation methodology to assess the usefulness of the DTM generated precision components is planned to be discussed in detail in the proposed talk.
 
Abstract:
The experimental evidences strongly suggest that embryonic stem (ES) cell lines can be created from human blastocyst-stage embryos and stimulated to develop into practically all types of cells found in the body. Cellular treatments produced from ES cells have attracted fresh interest. The potential utility of ES cells for gene therapy, tissue engineering, and the treatment of a wide spectrum of currently untreatable diseases is simply too vital to ignore; however, further improvements in our understanding of the basic biology of ES cells are required to deliver these forms of therapy in a safe and efficient manner. In this meeting, I'll share my research using ES cells and how they can be used to treat hematopoietic and neurodegenerative disorders.

Biography:

Dr. Anand Srivastava is a Chairman and Cofounder of California based Global Institute of Stem Cell Therapy and Research (GIOSTAR) headquartered in San Diego, California, (U.S.A.). The company was formed with the vision to provide stem cell based therapy to aid those suffering from degenerative or genetic diseases around the world such as Parkinson's, Alzheimer's, Autism, Diabetes, Heart Disease, Stroke, Spinal Cord Injuries, Paralysis, Blood Related Diseases, Cancer and Burns. Dr. Srivastava has been associated with leading universities and research institutions of USA. In affiliation with University of California San Diego Medical College (UCSD), University of California Irvine Medical College (UCI), Salk Research Institute, San Diego, Burnham Institute For Medical Research, San Diego, University of California Los Angeles Medical College (UCLA), USA has developed several research collaborations and has an extensive research experience in the field of Embryonic Stem cell which is documented by several publications in revered scientific journals. Furthermore, Dr. Srivastava’s expertise and scientific achievements were recognized by many scientific fellowships and by two consecutive award of highly prestigious and internationally recognized, JISTEC award from Science and Technology Agency, Government of Japan. Also, his research presentation was awarded with the excellent presentation award in the “Meeting of Clinical Chemistry and Medicine, Kyoto, Japan. Based on his extraordinary scientific achievements his biography has been included in “WHO IS WHO IN AMERICA” data bank two times, first in 2005 and second in 2010.
Speaker Sessions
Biography
Mao-Kuen Kuo received his B.S. and M.S. degrees in Civil Engineering from National Taiwan University, Republic of China, in 1977 and 1979, respectively, and Ph.D. degree in Civil Engineering from Northwestern University, United States of America, in 1984. Presently, he is a Distinguished Professor in the Institute of Applied Mechanics, National Taiwan University. He joined the faculty of National Taiwan University in 1984. His research work was mainly on Elastodynamic Fracture Mechanics and Nondestructive Evaluation, and has been switched to quantum dots and surface plasmon, recently. He was a recipient of the 1987 Teaching Award sponsored by the Ministry of Education, Republic of China. He was also recipients of the 1987, 1988, 1989 and 2002 Teaching Award sponsored by the College of Engineering, National Taiwan University.

Abstract
This theoretical study explores the two-dimensional orbital motion of an optically bound heterodimer consisting of two gold nanoparticles (NPs) with different sizes, driven by circularly polarized light. This phenomenon arises from the interaction between the optical force and torque generated by the circularly polarized light and the reactive drag force from the surrounding medium. We calculate the optical forces exerted on each NP by analyzing the Maxwell’s stress tensor on their surfaces and simulate their trajectories using dynamic equations of motion. Our results demonstrate that, regardless of the initial conditions of the two NPs, they will become optically bound together, exhibiting rigid-body translation and rotation. Notably, the center of mass of the heterodimer undergoes an orbital revolution around a fixed point eventually. The heterodimer's orbital radius and direction of revolution are influenced by the size disparity between the two NPs. The circularly polarized light-manipulated heterodimer behaves like a boomerang, acting as a spinning rotor on a circular path. Additionally, each NP experiences spin motion, with the spin direction determined by the handedness of the circularly polarized light. These findings offer valuable insights into the optomechanical manipulation of non-monodisperse NP clusters using circularly polarized light.
Biography

Eng-Poh Ng received his BSc. (Ind. Chem.) degree in 2004 from Universiti Teknologi Malaysia. He obtained his MSc. (Chem.) degree in 2006 and under the supervision of Prof. Dr. Halimaton Hamdan. Then, he received his PhD degree in 2009 from University of Upper Alsace, France under the supervision of Prof. Dr. Svetlana Mintova. He joined Universiti Sains Malaysia in 2010 as a Senior Lecturer before being promoted to Associate Professor in 2016. Currently, he has published more than 170 indexed journals including top-tier journals like Science, Chemistry of Materials, Green Chemistry, Chemical Engineering Journal, etc. His current H-index is 46 with a total citation of 6590. He was also one of the World's Top 2% Scientists in his research field listed by Stanford University since 2019 until 2022. His main research interests are synthesis, investigation and application of nanoporous silica-based materials for adsorption, catalysis and other advanced applications.
Abstract:
Mordenite is one of the most important industrial zeolites with two-dimensional pores (6.5 × 7.0 Å2 ? 2.5 × 5.7 Å2). It has widely been used in the agricultural, petrochemical and separation processes. However, the microporosity of mordenite limits its application in certain catalytic reactions involving bulky molecules, where the presence of small micropores creates a barrier to molecular diffusion. Furthermore, the restricted pore size of zeolites also lead to mass transfer for reactant molecules, causing coking and catalyst deactivation. In this work, highly active hierarchical mordenite zeolite with micro/mesoporosity (TM-n) for selective synthesis of cyclic acetals via acetylation reaction is reported. The hierarchical zeolite is synthesized using soft-templating approach with variations in octadecyltrimethoxysilane (OTMS/Al2O3 ratio, n = 0.2, 0.3 and 0.4) in precursor hydrogels. The results reveal that OTMS not only creates secondary mesoporosity in zeolite framework (larger mesopore volume, external surface area, average pore diameter), but also influences the crystallization process, altering the crystal morphology, crystallinity and Si/Al ratios. Among TM-n zeolites prepared, TM-0.3 hierarchical mordenite has the optimum OTMS amount incorporated while further increasing the OTMS amount leads to the formation of ANA/GIS intergrowth. Thanks to the accessible hierarchical porosity, reduced acidity and morphological effects, the TM-0.3 hierarchical mordenite exhibits excellent catalytic performance (84.1% conversion, TOF = 0.087 s?1, 61.5% dioxolane selectivity) in acetylation of glycerol and benzaldehyde (160 °C, 20 min) better than pristine mordenite. In addition, comparative catalytic tests with classical homogeneous and heterogeneous catalysts, including H2SO4, HCl, CH3COOH, H–Y, H-LTL, Na-X, Na-A, are performed. Furthermore, the catalytic performance is superior than of the pristine mordenite and other conventional homogeneous and zeolite-based catalysts. More importantly, the catalyst is reusable for five runs with minimal loss of activity (TOF = 0.087 ? 0.084 s?1), offering it as a potential acid catalyst for chemical productions involving bulky molecules. 
Biograph:

Performance-driven professional with 20 years of experience in the health care and life sciences industry, with a strong focus on Digital Pathology and data sciences. Proven track record in running a global organization and building strategic partnerships with leading Pharma/Biotech companies with focus in oncology. Strong technical background in drug development process, companion diagnostic strategy, business development, genomics, pathology and clinical implementation of tissue and image-based assays. Ability to drive complex strategies forward and guide multi-disciplinary teams to success while managing a global team in a matrix environment. Significant achievements across professional services, product development, operations, and alliance management. Demonstrated success in solving key problems and implementing solutions leading to successful delivery of projects and establishment of partnerships as a trusted advisor, team leader and partner

Abstract: 

At BioAI, we develop world-leading machine learning technology to develop digital biomarker tests for patient selection and screening. The BioAI PredictX platform is capable of ingesting a range of data types, including Digital Pathology, Multiomics and Real-World Evidence. Using multimodal data, state-of-the-art AI methods, and integrated deep learning, we can build predictive and prognostic models across a wide range of therapeutic areas. BioAI has built numerous models that can be used to classify both molecular status and tissue biomarkers directly from H&E slides without the need for additional molecular or IHC testing.  PredictLung, currently in development, is an AI-powered digital test panel for NSCLC patient tumor tissue samples that can predict actionable mutations and biomarkers from H&E stained images.  This test leverages an existing H&E image (available as a standard diagnostic procedure) and is a rapid, generalizable screening test that can help guide therapy selection.
Biography:

Priya Hays, M.S., Ph.D. is an accomplished science writer, having written and published five books as well as having authored over twenty publications in journals as varied as the Bulletin of Science, Technology and Society, L’Esprit Createur, Interdisciplinary Literary Studies, Genetics in Medicine, Journal of Clinical Investigation and Studies, and Preventive Medicine, Epidemiology and Public Health and Journal of Clinical and Translational Research.  The Second Edition of her book Advancing Healthcare Through Personalized Medicine received critical acclaim, and she served as Guest Editor for a volume on cancer immunotherapies in the Cancer Treatment and Research series, both published by Springer Nature.  Her work has been featured is Open Access Government UK and Research Features UK. Her latest book is a compilation of papers entitled “A Dialectical Mind: Essays in Literary Studies, Science and Medicine” published by Eliva Press. She completed her postdoctoral research fellowship in the Division of Hematology/Oncology, Department of Medicine, at Dartmouth Medical School. She has an A.B. with Honors from Dartmouth College in Biochemistry and Comparative Literature, an M.S. in Genetics from the University of California, Davis, and a Ph.D. in Literature from the University of California, San Diego

Abstract:

Immune checkpoint blockade has evolved in the realm of cancer immunotherapies to become standard of care in front-line settings, as well as in adjuvant and even neoadjuvant settings, especially in immunogenic tumors such as advanced melanoma. However, while many patients respond to these therapies with long-term robust clinical outcomes, there exists a considerable degree of non-responders. Studies have attributed this clinical situation to a number of correlative and causative factors, and a new generation of therapies are being developed to be used alone or in combination with anti-CTLA-4 and anti-PD-1 therapies to improve survival and overall response rates. This talk will
discusses the next generation immune checkpoint inhibitors against LAG-3, TIGIT, and TIM-3 and highlights emerging insights into their mechanisms of action. Another approach is the use of tumor infiltrating lymphocytes, discussed in the context of feasibility and randomized trials. These two approaches outlined in this paper explain distinct avenues to address the issue of non-responders and provide ways to circumvent the difficulties they pose for patients and in the clinic. This talk concludes on future directions in the form of reverse translation methods and their use and application for addressing non-responders to immune checkpoint blockade.
Biograph:

Mr. Deven Patel, the CEO, President and Cofounder of Global Institute of Stem Cell Therapy and Research (GIOSTAR) is based in San Diego, California, U.S.A. GIOSTAR was formed with the vision to provide affordable stem cell based therapies to the masses around the world suffering from many incurable degenerative diseases. He was honored with USA Congressional Recognition for his efforts in spreading the advancement of stem cell science around the world.  He was also bestowed upon Asian Heritage Award for his business leadership in the field of stem cell science.  GIOSTAR under the leadership of Mr. Patel has developed several stem cell research and treatment facilities around the globe including USA, Mexico, India, Costa Rica plus few more in near future in China, Thailand, Greece , Bahamas, Dubai and Australia. GIOSTAR, in collaborations with Govt. of Gujarat, India, developing world's largest Stem Cell Treatment Hospital in India.

Abstract:

The life expectancy or longevity is the number of years a person is expected to live. It depends on various factors including genetics, gender, individual life style and socio-economic factors. According to the United Nations, the global life expectancy as of 2023 was 70.8 years for males and 76.0 years for females, for an average of 73.4 years. Longevity, vary significantly by region as well as by country.  Various scientific discoveries in the recent decades, in the area of human health, have contributed towards improvement in longevity.
Biologically, human aging is associated with reduced tissue regeneration, increased degenerative disease, and cancer. Stem cells persist throughout life in numerous mammalian tissues, replacing cells lost to homeostatic turnover, injury, and disease. With the aging process, stem cell function declines in numerous tissues as a result of gate-keeping tumor suppressor expression, DNA damage, changes in cellular physiology, and environmental changes in tissues.  Like all cells, stem cell aging is determined partly by the accumulation of damage over time. Declines in stem cell function during aging can be attributed to telomere shortening, DNA damage, and mitochondrial damage. Mitochondrial activity, tissue growth, and metabolic rates during development can also influence life span and the rates of cellular aging at later stages of life. The criticality of normal mitochondrial function, required for embryonic stem cell proliferation, regulating differentiation, and preventing the emergence of tumorigenic cells during the process of differentiation, was demonstrated by GIOSTAR Chairman Dr Anand Srivastava in his work at UCLA. The author showed that by arresting the mitochondrial function the cell division ability of stem cells were enhanced. This was a significant finding as the role of genes associated with pluripotency were linked to the mitochondrial function. Indirectly, it was observed that aging can be controlled by modulating the mitochondrial function. GIOSTAR is the pioneer and leading institute working in area of stem cells and regenerative medicine. Under the scientific leadership of Dr Anand Srivastava, the institute developing and providing the therapeutic interventions harnessing the power of stem cells.
Biography:
Sarita Khemani, MD is a Clinical Associate Professor of Medicine and Neurosurgery Hospitalist at Stanford University School of Medicine. Her clinical duties involve managing medical co-morbidities, with the primary goal of preventing post operative complications in the hospital setting. She is also the head of Stanford’s Lifestyle Medicine Stress Neuroscience pillar. Dr. Khemani is actively involved in medical education, serving as the Director of the Perioperative Medicine Rotation for medical students. She has been awarded for excellence in teaching and has presented at various local, regional, and national conferences. Her work focuses on integrating clinical practice with advancements in neuroscience and lifestyle medicine, with a commitment to enhancing patient care and medical training.

ABSTRACT

 
With aging population, the number of patients undergoing surgeries annually are increasing. Post-operative delirium (POD) is one of the most common and serious complications after surgery, affecting 10% to 50% of surgical patients. POD significantly contributes to patient morbidity, prolonged hospital stays, and increased healthcare costs. Moreover, research indicates that POD can have long term consequences, including cognitive impairment that may persist and potentially contribute to neurodegeneration.In this talk, we will discuss the current state of post-operative delirium research, highlighting the heterogeneity in risk factors, clinical presentation, and underlying mechanisms. We will briefly discuss updates on current treatment approaches and their limitations. We will go over why one-size-fits-all approach needs to shift towards a precision medicine model tailored to individual patient profiles. Drawing from the broader literature, we will explore the application of biomarkers indicating oxidative stress, neuroglial damage, and inflammatory responses that could help recognize patients with preoperative vulnerability to subsequent cognitive decline. We will conclude by discussing the challenges and opportunities in implementing precision medicine strategies in post operative delirium prevention, including the need for interdisciplinary collaboration and the integration of biomarker assessments into routine clinical practice. By implementing a precision medicine approach, we can develop personalized, targeted practices to mitigate the risk of post operative delirium and improve outcomes for our aging population.
 
 
Abstract:
Background: Umbilical cord-derived Mesenchymal Stem Cells (UC-MSCs) exert potential anti-inflammatory properties and in previous studies have shown anti-fibrotic effects in animal models of liver fibrosis and cirrhosis. In this proof-of-concept, first in animal study, we examined the effect of human UC-MSCs combined with small extracellular vesicles (SEVs) on liver fibrosis in a rat model of fibrosis and cirrhosis. Methods: Human UC-MSCs were cultured via a xenofree, explant process with modifications to passage 3 and SEVs were obtained from supernatant of the cultured UC-MSCs. Two groups, each of 14 Wistar male rats, aged 7-8 weeks, received oral CCL4 with olive oil (1ml/kg) twice weekly for a total of 6 weeks from week 1 to week 6. Starting at week 4, after all animals in both groups received 6 induction doses of CCL4, one group of 14 animals received three weekly IV doses of UC-MSC + SEV at a dose of 1 million MSCs and 5 billion SEV each. All animals alive at week 7 were sacrificed. 14 animals who received CCL4 alone from weeks 4-7 were control animals. The primary objectives were to examine the survival differences between two groups of animals and the effect of UC-MSC + SEV on fibrosis stage by Trichrome and Sirius Red. 
 
Results: Six animals in the control group died before week 6 whereas all 14 animals in the US-MSC + SEV were alive at week 6. The survival difference at 6 weeks was significant between two groups (100% with UC-MSC + SEV vs 57%, p=0.0066). The necropsy of 6 dead animals in the control group showed cirrhosis in all 6 animals. The comparison between 8 animals in the control group and 14 animals receiving US-MSC + SEV is shown in Table1. Notably, liver fibrosis stage by both Trichrome and Sirius Red was significantly lower in the UC-MSC + SEV group. While there were no animals in the UC-MSC + SEV group had cirrhosis, there were 12 animals in the control group with cirrhosis. There were corresponding favorable liver biochemistry and liver immunohistochemistry changes in the UC-MSC +SEV group.
 
Conclusion: Human UC-MSCs cultured to passage 3 in combination with SEV significantly improved the survival of the animals receiving lowdose CCL4. UC-MSC + SEV dramatically reduced the development of fibrosis and cirrhosis induced by CCL4. Further studies are needed to validate our observations and to test the combination of UC-MSC + SEV in other animal models and in humans with fibrotic liver diseases and liver failure.  
 
Biography:

Dr. Navneet Boddu is a specialist in Regenerative Medicine. He is triple board-certified in Pain Medicine, Anesthesiology and Echo-cardiogram with more than 25 years of experience.  At Advanced Pain and Regenerative Specialists, Dr. Boddu provides personalized treatments for his patients’ spine and joint disorders. Using the latest medical technology and evidence-based cellular therapies, like autologous bone marrow, fat stem cells and other biologics, Dr. Boddu uses the patient’s own cells to regenerate and heal joints, tendons, ligaments, and spine disorders. Dr Boddu is a five-time Top Doctor in Pain Medicine and Anesthesiology in San Diego County. He is a contributing author of chapters about nerve blocks and interventional pain injections in the textbook Interventional Orthopedics Procedures. He also co-authored chapters in the Textbook of Regenerative Medicine. He conducted FDA-authorized umbilical cord stem cell treatments for patients with severe COVID. Dr Boddu is an anesthesiologist at Scripps Medical Center, Encinitas. He is a member of the scientific board at Therapeutic Solutions International Inc., a  biotech company and industry leader in stem cell, exosome, and immunotherapy technologies. Dr. Boddu was chairman of the Anesthesiology Department at TriCity Medical Center from 2015 to 2017. Prior to that he was chairman at Providence Mission Hospital Laguna Beach, where he practiced Pain Medicine and Anesthesiology. 
Poster Session
Biography
 
Dr. Walter D. Furlan received his PhD in Physics from the National University of La Plata (Argentina) in 1988. He is now Professor of Optics at the University of Valencia (Spain) since 2010. His research spans the field of Optics, initially focusing on phase-space formalisms and later on the design and applications of diffractive optical elements with aperiodic geometries.: He is currently the co-director of the "Diffractive Optics Group", where the research primarily targets the design of structured diffractive lenses and their applications in optical trapping and ophthalmology.
Abstract
In this communication, we present a new kind of diffractive-kinoform lenses characterized by the phase distribution of the Silver Mean (SM) sequence. The focusing properties of these aperiodic lenses are analytically studied. It is shown that, under monochromatic illumination, the SM lenses direct most of the incoming light into four foci whose focal lengths are related to the Silver ratio. Two different photonics applications are proposed.
First, we present the implementation of multi-trap optical tweezers. We show that The quadrifocal- kinoform feature of the SM lenses enables multiple axial trapping, providing an alternative method for
three-dimensional manipulation. Positioning particles along a line at controlled distances allows for the exploration of interactions between them under laser irradiation. Second, we propose the application of this approach in ophthalmology to design a multifocal intraocular lens. Multifocal lenses are currently the most popular surgical alternative for correcting presbyopia and cataracts. We show that under broadband illumination, the superposition of the different foci creates an extended depth of focus in the intraocular lens. Finally, the application of this type of aperiodic lens in other fields, such as microscopy or quantum computing, is also suggested.